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ABSTRACT 2. DESIGN

This article describes the design of Bavieca, an open;,_ . . . . . .
- S Bavieca is written entirely in C++ and makes extensive use
source speech recognition toolkit intended for speech re-

search and system development. The toolkit supportsdattic of the Standard Template Library (STL) and the Linear Alge-

based discriminative training, wide phonetic-contextcefnt bra PACKage (LAPACK,) for linear algebra support, which is

acoustic scoring, large n-gram language models, and the md‘geely available (www.netlib.org/clapack). The code bise

: : . . quite small, comprising about one hundred C++ classes and
common feature and model transformations. Bavieca is Wl’ltéo 000 lines of code

ten entirely in C++ and presents a simple and modular design . X .
with an emphasis on scalability and reusability. BaViecaser\-/r:(\a/et(rm!meccci}?cgs;sr OostZO:Ltjczr? ;sr:gi%dd::;;togfmt;aetn i
achieves competitive results in standard benchmarks. ysp purp 9

The toolkit is distributed under the highly unrestrictedstatlstlcs or estimating model parameters according teesom

Apache 2.0 license, and is freely available on SourceForge.?St'matlon criterion. These tools present a 5|m.ple '”@rfa
in which many parameters concerning algorithmic detais ar

Index Terms— automatic speech recognition optional and receive default values. Following the tradiéil
design, these tools are intended to be invoked from scgptin
1. INTRODUCTION languages such as Perl or Python in order to build recognizer

This is a similar design to that of the HTK [1] or Kaldi toolkit

Bavieca is an open-source speech recognition toolkitdiedn [4], however the number of tools in Bavieca is much reduced.
for speech research and as a platform for rapid developfools are organized to make the toolkit scalable to compute
ment of speech-enabled solutions by non-speech experts. diusters and decoding engines are available as executatiles
supports common acoustic modeling and adaptation tectibraries.
niques based on continuous density hidden Markov models Most C++ classes within the toolkit hidmimportantm-
(CD-HMMs), including discriminative training. Bavieca-in plementation details and expose relatively simple inter$a
cludes two efficient decoders based on dynamic and statibat favor reusability across different tools. For examfie
expansion of the search space that can operate in batshme aligner objects are used in all the accumulation tools,
and live recognition modes. Bavieca is written entirely inand the acoustic and language model interfaces are shared by
C++ and freely distributed under the Apache 2.0 licensdraining, decoding and lattice edition tools. Executioroes
(https://sourceforge.net/projects/bavieca/). and warnings are handled via exceptions, which increase the

Compared to existing open-source automatic speectgadability of the code.
recognition (ASR) toolkits such us HTK [1], CMU-Sphinx Acoustic modeling is based on CD-HMMs and the HMM-
[2], RWTH [3] and the more recent Kaldi [4], Bavieca is topology, which cannot be modified outside the code, is fixed
characterized by a simple and modular design that favorto three states with no transition probabilities.
scalability and reusability, a small code base, a focus on
real-time performance and a highly unrestricted license.

Bavieca was developed at Boulder Language Technolo-
gies (BLT) during the last three years to fulfill the needs of3 1. Front-end
research projects conducted within the company. Curréntly ~
is being used in a wide variety of projects including congers Speech parametrization is carried out using Mel-Frequency
tional dialog systems and assessment tools that are deploy€epstral Coefficients (MFCC). A configuration file is used
in formal educational settings and other real-life scasari  to specify feature extraction parameters such as the window

This work was supported by U.S. Department of Education dwam- size and width, the tapering function, filterbank charaster

ber R305B070434, NSF award number 0733323, NIH award nuRsar  {iCS, frequency cut-offs, number of cepstral parametats, e
DC009926-01 and NSF award number 1S-1111953. ergy, etc. Dynamic coefficients can be appended to the featur

3. FRONT END AND MODELING TOOLS




vectors in the form of n-order derivatives or by concaterati 3.3. Accumulation and estimation

static coefficients from adjacent feature vectors (spliesd A lati ¢ sufficient statistics i ied out usihe t

ture vectors). Cepstral mean normalization (CMN) and cep- ccumufation of suihcient statistics 1S carried ou u_snm_g
cumulation toolsm accunul at or for maximum likeli-

stral mean variance normalization (CMVN) can be applie ¢ 4 (ML) and . teriori (MAP) estimai q
at both the utterance or session level. Decoders also suppdf®® (ML) and maximum a posteriori ( ) estimation, an
t accunul at or for standard and boosted maximum mu-

stream-mode for live recognition. Feature decorrelatimm c

be carried out using Linear Discriminant Analysis (LDA) andtu"j_lI information (MMI) estimation. Th?se tools_allgn theta_da
Heteroscedastic LDA (HLDA) using the acoustic models and the aligner objects prewiousl|

described and accumulate statistics on disk in a univeosal f
mat suitable for physical and logical HMM-states and for nu-
3.2. Alignments merator and denominator statistics. This strategy, atthou
) . ) not as flexible as accumulating statistics at the utteraswc |
There are four C++ aligner classes implementing graphebasgy,rq,gh the use of alignment objects, is more compact.
and linear versions of the Viterbi and Forward-Backward al-  gqtimation of model parameters using sufficient statistics
gorithms. These classes can handle phonetic-contexts/of ag arried out using the estimation toats,est i mat or for
length, and are reused across different components in the sy, estimation, mapest i mat or for MAP estimation and
tem such as the accumulation and adaptation tools. dt est i mat or for standard and boosted MMI estimation.
The graph-based alignment is a data-driven method to
find the sequence of word pronunciations and symbols that .
better matches the utterance while performing the actua{‘)l'A" Context modeling

alignment. The graph-based aligner performs over a didectecontext clustering is carried out using logical accumukato
acyclic graph (DAG) of HMM-states built from the reference gptained from single Gaussian HMMs and decision trees that
string of words (typically the hand-made transcription) byare either state-specific or global. Decision trees arergene
considering alternative pronunciations and optional syisb  ated following a standard top-down procedure that iteehtiv
like silence or fillers. The alignment is carried out againstspiits the data by appiying binary questions using a ML cri-
all the paths in the graph simultaneously, although optionaerion. Questions are asked about the correspondence to pho
and alternative symbols may not receive any significant ocnetic groups (defined by hand-made phonetic rules) and the
cupation. The construction of this graph is similar to thewithin-word position (initial, internal and final). The sging
procedure in the Attila toolkit [S]. It comprises the follovg  process is governed by two parameters: a minimum occupa-
steps, a) generation of an initial graph of words from thejon count for each leaf and a minimum likelihood increase
reference inClUding alternative pronUnCiationS foundhe t for each Spllt Fina”y, a bottom-up merging process is ap-
pronunciation lexicon (optionally) and optional symbdi§,  plied to merge those leaves which, when merged, produce a
transforming the word-graph into a phone-graph, ) expandikelihood decrease below the minimum value used to allow a
ing the phone-graph by propagating left and right phoneti%pm_
context and attaching within-word position labels to each
phone-arc using a queue, d) transforming the phone-gra
into a graph of HMM-states using context-clustering dexisi
trees and the phone labels from the previous step. Befor&coustic model refinement through mixture splitting and
performing the actual alignment the graph is minimized fol-merging can be performed after each reestimation iteration
lowing a Forward-Backward edge merging process consistingsing thegmmedi t or tool, the original set of HMMs and
of merging equivalent states and arcs (HMM-states). Thishe accumulated statistics. Gaussian splitting is peréorm
process considerably reduces the graph size and thus tie tinteratively until the desired number of components in the
and memory requirements for the alignment. Gaussian mixture model (GMM) is reached. At each iter-
The linear aligner is the method of choice when the refation the Gaussian to split is selected based on either the
erence is completely known in advance, i.e., no optional olargest average covariance (default behavior) or the $arge
alternative symbols/words are allowed. This is the casenwheoccupation.
collecting Gaussian specific statistics for semi-superis After the reestimation iteration(s) that typically follow
adaptation using the best-path from the decoder or whemixture splitting, the occupation of some Gaussian compo-
collecting Gaussian statistics at the phone level for diser nents may fall below the minimum occupation needed to reli-
native training. ably estimate their parameters (typically 100 featureaesjt
Alignments can be stored in disk in binary or text format. Thus, aiming for a robust parameter estimation, components
In binary format an array of paifsiMM-state, occupatigris ~ with an occupation falling below a given threshold are mdrge
kept for each time frame. Additionally, for Viterbi alignmis  to the nearest Gaussian in the mixture, which is found using a
the word alignment information is kept, which might not be covariance metric. Each GMM after applying these tools will
recoverable otherwise. typically have a variable number of components depending

@.5. Mixture splitting and merging



on the data aligned to the HMM-state, which varies acrosdt accunul at or anddt esti mat or to accumulate nu-
reestimation iterations. merator and denominator statistics and to estimate model pa
rameters from the accumulators respectively. In additios,
lattice edition tool is used to convert the lattices to a fatrm
suitable for the accumulation of statistics, which inclsidat-
Vocal Tract Length Normalization (VTLN) [6] is imple- tice determinization, HMM-state marking, path insertiett,
mented using a piece-wise linear function with one break- Both numerator and denominator statistics are accumu-
point to scale the filterbank frequencies. Warp factors aréated from a single set of lattices resulting from decodmeg t
estimated under the ML criterion using conventional adoust training data. To enable the accumulation of numeratoisstat
models, while unvoiced phones and symbols are excludeits the orthographic transcription of each utterancei(tie
from the estimation. corresponding time alignment information) is added to each
Maximum Likelihood Linear Regression (MLLR) is im- lattice if not present, and the path marked.
plemented for both feature-space (fMLLR) [7] and model- The accumulation of denominator statistics may imply
space adaptation [8]. For fMLLR a single transform is useda significant number of redundant likelihood computations
In model-space, mean and diagonal variance adaptation &ross overlapping phones in the lattice. For this reasien th
performed using a regression tree. The regression tre@is geprocess is carried out by an optimized Forward-Backward
erated by clustering Gaussian means using either K-mea@aigner object that utilizes a hash table to cache and reuse
or expectation—maximization (EM) clustering. The cluster likelihood evaluations. This simple strategy can speethap
ing process is governed by two parameters: the maximur@ccumulation of statistics by over a factor of 2 depending on
number of base-classes and the minimum number of Gau#he lattice depth.
sian components per base-class. Adaptation statisticacare
cumu_lgted in the regr(_ession tree and transforms are estimat 4. DECODERS
conditioned on a minimum number of frames and observed

Gaussian distributions per transform. The toolkit comprises two large vocabulary decoders, a dy-
namic decoder and a WFSA (Weighted Finite State Acceptor)
3.7. Language Modeling based decoder. The main difference between these systems is
how the LM is applied during the search. The dynamic de-
The toolkit supports language models (LMs) in the ARPA n-coder uses a decoding network compiled and optimized from
gram format. Internally a n-gram LM is represented as a Fithe set of physical HMM-states and the pronunciation lexi-
nite State Machine (FSM) in which each state represents @n, while the LM is applied dynamically at the token level.
word-history and each transition has a word label (or backon the other hand, the WFSA decoder performs recognition
off symbol) and a log-likelihood attached. Given a new word,on a decoding network in which all sources of information
the current LM-state is updated by performing a binary searcincluding the LM are statically compiled and optimized.
on the sorted array of transitions, which includes a traonsit These two decoders serve complementary purposes. In
to the back-off state. This representation makes the use @he context of large vocabulary dialog systems we need a larg
different n-gram sizes transparent to the decoder. vocabulary decoder that can handle large and potentiatly dy
namic LMs with a small memory footprint for live applica-
3.8. Lattice Processing tions in resource-constrained scenarios. In turn, the WFSA
decoder exhibits excellent performance for experimeonati
Lattice operations are performed usingltlzd t i ceedi tor  at the expense of a large memory footprint on some tasks.
tool. Operations include: word error rate (WER) computatio The design of both decoders presents a number of simi-
(oracle), HMM-state and LM marking, HMM-state align- larities: a) Decoding networks are FSMs in which arcs and
ment, path-insertion, determinization (merging of eqi@émé.  nodes are stored in two contiguous arrays of memory, arcs
states and arcs), posterior probability and confidenceumeas keep the offset of the destination node, and nodes keepfthe of
computation, etc. This tool only operates on lattices irRyin  set of the first outgoing arc (a node’s outgoing arcs are gtore
format, although lattices can be converted to text format focontiguously). This compact layout saves memory and fa-
visualization purposes. vors locality, which reduces cache misses. FSMs repreggenti
LMs are stored in the same fashion. b) HMM self-transitions
are not explicit in the decoding network but simulated dur-
ing the search. c) Data structures frequently accessedgluri
The toolkit supports model-based discriminative trainimg  decoding (such as Viterbi tokens on the dynamic decoder, ac-
der the MMI and boosted MMI estimation criteria with can- tive nodes, word-history items, lattice tokens, etc.) asap
cellation of statistics and I-smoothing to the previousate located during initialization as contiguous arrays of memo
tion [9]. Discriminative training is carried out using theots  to preserve locality and speed up the search. This enables

3.6. Speaker adaptation

3.9. Discriminative training



the utilization of offsets instead of pointers, which calest  sition is carried out by thef sabui | der tool and is lim-
ably reduces memory requirements in architectures with 64ted to cross-word triphones and small to medium size LMs,
bit memory addresses. d) Word-history items are organized aiven that the memory requirements would otherwise exceed
atree; every time a word-arc is visited a new item is appendetthe available physical memory. Each transition in the accep
to the tree. During decoding a garbage collection mechanistor keeps an integer encoding the symbol type (HMM-state
is periodically invoked to reuse word-history items antidet  index, word-id or epsilon) and the actual symbol, a floating
tokens that become inactive. e) During decoding, networlpoint value with the weight, and an integer with the offset of
nodes (or tokens) are activated only when their updated pathe destination state within the array of states (12 byted)to
score is within the pruning beam with respect to the score obtates in the WFSA can only be reached by transitions with
the best partial path. the same input symbol, which facilitates the recombination

The implementation of the lattice generation in both de- g gecoder utilizes a specialized hash table to facilitate
coders is identical and very similar to that of the Attilakdd 1,4 activation of states from emitting and epsilon tranaii
[5]. In addition to pruning thresholds, lattice depth is gov At each time frame the active states are processed, pagsscor
erned by the maximum number of distinct word sequenceg,e pdated with transition weights and acoustic scoras, an
kept at each active node (token in the dynamic decoderyegtination states of emitting transitions are activailon

which are managed by a specialized hash-table. transitions are processed in topological order until arttémgi
transition is found and its destination state activated.
4.1. Dynamic decoder Figure 1 shows the real time factor (RTF) of both decoders

the Wall Street Journal (WSJ) Nov’92 task using a bigram
. Decoders were run on a laptop computer equipped with
Core 2 Duo P8600 processor (2.4 GHz and 3MB cache)
loop built from the set of physical HMM-states and the pro-f.md 3Cd;B| of mamtm;n}olr)iz(irgy one core was usectj). Agous—
nunciation lexicon, while the LM is applied dynamically at IC models consisted of L1k Laussian components and were
the token level trained under the MLE criterion. The WFSA decoding net-
N . s . work had 7M transitions and 3.1M states for a total of 92 MB.
The decoding network comprises initial, internal and final : . . :
) . ) : When the SSE instruction set was used for acoustic scoring
parts, which contain HMM-states for the first phone, intérna .
. . the RTF of the WFSA decoder improved by 20 to 30%. Re-
phones and final phone of each word respectively. Inorderto | . . .
simplify the network building process for wide phonetic eon sults in figure 1 improve thosg reported by Novak [11] for two
texts, cross-word context spans only adjacent words and On?;VFiIébs?Sfrigsﬁﬁdee(rcséripzlrri];( aggx-ral?;b?éie sst?anr:g)t ask us-
the initial and final parts are sensitive to it while the inter g parng P Y '
nal part remains sensitive to intra-word phonetic contekt.o
Initial and final parts are built by enumerating state seqasr

This decoder is based on the token-passing paradigm, it SUE'EA
ports triphone and pentaphone phonetic contexts and n-gral
LMs of any size. The decoding network consists of a wor

internal part of the network up to the word arcs. This tree
minimized by merging linear sequences of arcs and prune
order to speed-up the computation of the look-ahead scc
Histogram and beam pruning are carried out globally, atw: 925
ends, and within each active node.

corresponding to all possible contexts, and are minimined 96 -
crementally for efficient support of wide phonetic contex
1 ™ 855

Hash-tables are used to keep auxiliary nodes that faeili

the connections to the internal part, which is built one wc 95

at a time. Once the network is built, word arcs are pushet £ [4

the initial part of the network in order to allow for early &k > g, 5 l

recombination. Finally the network is globally minimizestu £ !

ing a forward-backward merging process in orderto comb § g4 1

equivalent arcs and nodes. .‘CE : v WESA

LM look-ahead is implemented generating a tree from S 95 ! — WFSA+sse

1 Dynamic
I

w
(5]
——
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4.2. WFSA decoder Fig. 1. RTF vs Accuracy on the WSJ Nov’'92 task (bigram)

This decoder performs over a statically optimized WFSA that
is composed incrementally following a procedure similar to
the one described by Novak et al. [10]. The network compo-



4.3. Acoustic scoring toolkit [4]. WERs from Bavieca are given for ML estimation

(which are directly comparable to results from the other sys

The computation of Gaussian log-likelihoods is usually the[ . . L ;
. . - . ems) and after four iterations of bMMI training in rows s
most CPU-intensive task within an ASR system. Different ) urt ! ning In rows six

. . . and seven respectively. The last column of the table shows
techniques have been implemented to speed up this task.

The first optimizati ists of using th t nei hwhether gender dependent modeling (GD) was applied. It
€ Tirst optimization consists ot using th€ nearest N€IgNz , , e seen that Bavieca produces comparable results to othe
bor approximation [12] in conjunction with partial distanc

Lo . . . ASR systems.
elimination [13] in order to get rid of the exponential and te y

minating the computation as early as possible. Additignall 5K 20K

the support for Single Instruction Multiple Data (SIMD) par System bg | tg bg | tg GD
allel computation present in the x86 architecture is iz

to perform floating-point arithmetic operations in up tofou | HTK 511 32 | 111 95 | yes
vector dimensions simultaneously. In particular, the SSE2| LIMSI 48 | 31 | 11.0| 91 | yes
(Streaming SIMD Extensions) Intrinsics were used. In order| Kaldi 11.8 no
to take full advantage of this instruction set the data (fesst Bavieca 47 | 31 |106| 87 | no
and model parameters) were 16-byte aligned, because othe _Bavieca+bMMF 2.8 82 | no

wise a significant portion of the gains resulting from the-par

allel computation were lost when loading and storing thadat

into the 128-bit registers. SIMD support can be disabledgsi

a compilation flag if the SSE instruction set is not supported
by the architecture. Cholesky decomposition is used tocspees.2. My Science Tutor

upth'e evaluatl'on of full—govanaqce Gaussian distribugio d\/Iy Science Tutor (MyST) [16] is an intelligent tutoring
Finally, during decoding multiple network nodes attache : : s N

) . ) system designed to improve science learning in elementary
o the same physical HMM-state can be active SImUItaneéchool students through conversational dialogs with a&irt
ously, thus acoustic likelihoods for each HMM-state are” . 9 . 9
cached and reused within each time-frame science tutor. The MyST corpus comprises about 160 hours
' of conversational speech from 3rd, 4th, and 5th graders. The
corpus was collected using close-talk microphones and is

5. EVALUATION divided into 140 hours for training, 10 hours for developmen

and 10 hours for testing.
The system was evaluated on two tasks: the WSJ Nov'92 task

(5k and 20k vocabulary sizes) and the MyST task.

Table 1. WER on the WSJ Nov’'92 evaluation (%).

5.2.1. Recognition setup

5.1. WSJ The 140 hours of training data were parameterized using

Recognition results are reported on the WSJ Nov'92 test seté2 _MF_CC Coé\f;'\iﬁms plus Elz_nzr?y and ;he f|r_st an_(lj_hsec?]nd
Two evaluation conditions were examined, the 5k closed vo- erivatives. was applied for each session. € pho-

cabulary and the 20k open vocabulary conditions. In botﬁ"EtiC symbol set comprised 39 phone classes plus 12 symbols

cases non-verbalized pronunciations and standard bigndm alo model non-speech events including filled pauses and other
trigram LMs were used. Acoustic models were trained orfvents such as silence and breath noise. The vocabulary size
' as about 7k words including a small number of alternative

80 hours of data from the SI-284 dataset. For every speeé’l“ o A LM f h of the f dul
utterance, 39-dimensional feature vectors, consisting2of pronunciations. . odr elac ! the Pubrl mo l:jes (mea-
MFCCs and energy plus first and second order derivative§,ur_emem’ _magnet|3|_"n and electricity, varia esan weum)_
were extracted and CMN was applied. Word pronunciation ained by !ntgrpolatlon from a general LM puﬂt on the train
were extracted from the CMU dictionary (cmudict.0.7a) gsin Ing tra{n'scrlpu%n_s only. IThe CMU LM TO?_I:I(” [17.] was used
the standard CMU phonetic symbol set without stress markelfgr tramlng and interpo qt|on purposes. the tra|n.|ng -

(39 phonetic classes plus silence). Acoustic models ctasis started with a set of single-Gaussian context-independent

of 4100 clustered HMM-states and about 112k Gaussian di¢C!) HMMS initialized to the global distribution of the data
tributions with diagonal covariance. No feature transfarm which were reestimated for five iterations. Then a set of 4600

tion or speaker/gender adaptation was carried out, single-Gaussian context-dependent (CD) clustered tripko

Table 1 shows the performance of the system in compaP’-"aS generated using context decision trees. Pentaphone mod

ison with published results on the WSJ Nov’'92 evaluation.‘aling did not reduce the WER and resulted in slower decoding
e to the larger decoding network. After three reestinmatio

WER is given for 5k and 20k vocabulary sizes using bigramdu _ . : )
(bg) and trigram (tg) LMs, first pass decoding only. The tablgterations the CD HMMs were refined through 22 iterations
summarize; WE_RS from the HTK system described in [141, 1Results after four iterations of discriminative trainimgt comparable to
the LIMSI dictation system [15], and the more recent Kaldiresults from the other systems, which are based on MLE solely




of Gaussian splitting and merging, resulting in about 140k
Gaussian distributions (diagonal covariance).

VTLN was applied according to the standard iterative pro{!]
cedure until the warp-factors converged (5 iterations)DIAL
was applied by performing single-pass retraining on a set of
extended features (third derivatives were added) and attim
ing a full covariance Gaussian distribution for each clreste  [2]
HMM-state. Once the transform was estimated, features were
decorrelated and projected down to the original dimensiona
ity and the HMMs were settled into the new feature space.

Model-based discriminative training was conducted usind3]
the bMMI objective function. The training data were decoded
using a bigram LM and lattices were generated. The lat-
tice WER (oracle) was 3.06%, and the lattice depth (average
number of lattice arcs containing words that cross everg tim[4]
frame) was 383 after making the lattices deterministic. The
size of the uncompressed lattices in disk once processesl to [5]
used for discriminative training was 323GB. Acoustic ssore
were scaled down with the inverse of the language-modef
scaling factor used for decoding and lattices were marked
with an unigram LM. The Gaussian specific learning rate wa%]
computed setting the constafitto 3. I-smoothing to the pre-
vious iteration was carried out using= 100. The boosting
factorb was set to 0.5. A comprehensive parameter optimiza-
tion was not carried out. (8]

Table 2 shows the WER on the development set after the
different training stages for both speaker independeh&(®i
speaker dependent (SD) systems.

[9]
| | SI | SD ]
initial CD models| 23.92 | 23.92
+VTLN 23.33 [10]
+HLDA 23.43| 22.98
+bMMI 20.57 | 20.32
+MLLR 19.28 (11]
+MLLR 18.25
[12]
Table 2. WER on the MyST task (%).
[13]

6. CONCLUSIONS

Bavieca is an open-source ASR toolkit intended for speech rg14]
search and system development. The toolkit is based on CD-
HMMs and offers a simple and modular design with an em-
phasis on efficiency, scalability and reusability. Bavieza [15]
hibits competitive results on standard benchmarks and-is be
ing successfully used at BLT on a number of research projects
addressing both read and conversational children’s spesch [16]
well as conversational adult’s speech. Nonetheless, ted-de
opment of Bavieca is still a work in progress. Future plans
include exploring generic recipes for building ASR systems[m
further code refactoring and testing, and implementatibn o
new features, such as feature-space discriminative tigrini
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