
THE BAVIECA OPEN-SOURCE SPEECH RECOGNITION TOOLKIT

Daniel Bolãnos

Boulder Language Technologies (BLT), Boulder, CO, 80301 USA
dani@bltek.com

ABSTRACT

This article describes the design of Bavieca, an open-
source speech recognition toolkit intended for speech re-
search and system development. The toolkit supports lattice-
based discriminative training, wide phonetic-context, efficient
acoustic scoring, large n-gram language models, and the most
common feature and model transformations. Bavieca is writ-
ten entirely in C++ and presents a simple and modular design
with an emphasis on scalability and reusability. Bavieca
achieves competitive results in standard benchmarks.

The toolkit is distributed under the highly unrestricted
Apache 2.0 license, and is freely available on SourceForge.

Index Terms— automatic speech recognition

1. INTRODUCTION

Bavieca is an open-source speech recognition toolkit intended
for speech research and as a platform for rapid develop-
ment of speech-enabled solutions by non-speech experts. It
supports common acoustic modeling and adaptation tech-
niques based on continuous density hidden Markov models
(CD-HMMs), including discriminative training. Bavieca in-
cludes two efficient decoders based on dynamic and static
expansion of the search space that can operate in batch
and live recognition modes. Bavieca is written entirely in
C++ and freely distributed under the Apache 2.0 license
(https://sourceforge.net/projects/bavieca/).

Compared to existing open-source automatic speech
recognition (ASR) toolkits such us HTK [1], CMU-Sphinx
[2], RWTH [3] and the more recent Kaldi [4], Bavieca is
characterized by a simple and modular design that favors
scalability and reusability, a small code base, a focus on
real-time performance and a highly unrestricted license.

Bavieca was developed at Boulder Language Technolo-
gies (BLT) during the last three years to fulfill the needs of
research projects conducted within the company. Currentlyit
is being used in a wide variety of projects including conversa-
tional dialog systems and assessment tools that are deployed
in formal educational settings and other real-life scenarios.

This work was supported by U.S. Department of Education award num-
ber R305B070434, NSF award number 0733323, NIH award numberR43
DC009926-01 and NSF award number IIS-1111953.

2. DESIGN

Bavieca is written entirely in C++ and makes extensive use
of the Standard Template Library (STL) and the Linear Alge-
bra PACKage (LAPACK) for linear algebra support, which is
freely available (www.netlib.org/clapack). The code baseis
quite small, comprising about one hundred C++ classes and
30,000 lines of code.

The toolkit consists of about 25 command-line tools that
serve very specific purposes such as accumulating sufficient
statistics or estimating model parameters according to some
estimation criterion. These tools present a simple interface
in which many parameters concerning algorithmic details are
optional and receive default values. Following the traditional
design, these tools are intended to be invoked from scripting
languages such as Perl or Python in order to build recognizers.
This is a similar design to that of the HTK [1] or Kaldi toolkits
[4], however the number of tools in Bavieca is much reduced.
Tools are organized to make the toolkit scalable to compute
clusters and decoding engines are available as executablesand
libraries.

Most C++ classes within the toolkit hideunimportantim-
plementation details and expose relatively simple interfaces
that favor reusability across different tools. For example, the
same aligner objects are used in all the accumulation tools,
and the acoustic and language model interfaces are shared by
training, decoding and lattice edition tools. Execution errors
and warnings are handled via exceptions, which increase the
readability of the code.

Acoustic modeling is based on CD-HMMs and the HMM-
topology, which cannot be modified outside the code, is fixed
to three states with no transition probabilities.

3. FRONT END AND MODELING TOOLS

3.1. Front-end

Speech parametrization is carried out using Mel-Frequency
Cepstral Coefficients (MFCC). A configuration file is used
to specify feature extraction parameters such as the window
size and width, the tapering function, filterbank characteris-
tics, frequency cut-offs, number of cepstral parameters, en-
ergy, etc. Dynamic coefficients can be appended to the feature



vectors in the form of n-order derivatives or by concatenating
static coefficients from adjacent feature vectors (splicedfea-
ture vectors). Cepstral mean normalization (CMN) and cep-
stral mean variance normalization (CMVN) can be applied
at both the utterance or session level. Decoders also support
stream-mode for live recognition. Feature decorrelation can
be carried out using Linear Discriminant Analysis (LDA) and
Heteroscedastic LDA (HLDA).

3.2. Alignments

There are four C++ aligner classes implementing graph-based
and linear versions of the Viterbi and Forward-Backward al-
gorithms. These classes can handle phonetic-contexts of any
length, and are reused across different components in the sys-
tem such as the accumulation and adaptation tools.

The graph-based alignment is a data-driven method to
find the sequence of word pronunciations and symbols that
better matches the utterance while performing the actual
alignment. The graph-based aligner performs over a directed
acyclic graph (DAG) of HMM-states built from the reference
string of words (typically the hand-made transcription) by
considering alternative pronunciations and optional symbols
like silence or fillers. The alignment is carried out against
all the paths in the graph simultaneously, although optional
and alternative symbols may not receive any significant oc-
cupation. The construction of this graph is similar to the
procedure in the Attila toolkit [5]. It comprises the following
steps, a) generation of an initial graph of words from the
reference including alternative pronunciations found in the
pronunciation lexicon (optionally) and optional symbols,b)
transforming the word-graph into a phone-graph, c) expand-
ing the phone-graph by propagating left and right phonetic
context and attaching within-word position labels to each
phone-arc using a queue, d) transforming the phone-graph
into a graph of HMM-states using context-clustering decision
trees and the phone labels from the previous step. Before
performing the actual alignment the graph is minimized fol-
lowing a Forward-Backward edge merging process consisting
of merging equivalent states and arcs (HMM-states). This
process considerably reduces the graph size and thus the time
and memory requirements for the alignment.

The linear aligner is the method of choice when the ref-
erence is completely known in advance, i.e., no optional or
alternative symbols/words are allowed. This is the case when
collecting Gaussian specific statistics for semi-supervised
adaptation using the best-path from the decoder or when
collecting Gaussian statistics at the phone level for discrimi-
native training.

Alignments can be stored in disk in binary or text format.
In binary format an array of pairs[HMM-state, occupation] is
kept for each time frame. Additionally, for Viterbi alignments
the word alignment information is kept, which might not be
recoverable otherwise.

3.3. Accumulation and estimation

Accumulation of sufficient statistics is carried out using the
accumulation tools:mlaccumulator for maximum likeli-
hood (ML) and maximum a posteriori (MAP) estimation, and
dtaccumulator for standard and boosted maximum mu-
tual information (MMI) estimation. These tools align the data
using the acoustic models and the aligner objects previously
described and accumulate statistics on disk in a universal for-
mat suitable for physical and logical HMM-states and for nu-
merator and denominator statistics. This strategy, although
not as flexible as accumulating statistics at the utterance level
through the use of alignment objects, is more compact.

Estimation of model parameters using sufficient statistics
is carried out using the estimation tools,mlestimator for
ML estimation,mapestimator for MAP estimation and
dtestimator for standard and boosted MMI estimation.

3.4. Context modeling

Context clustering is carried out using logical accumulators
obtained from single Gaussian HMMs and decision trees that
are either state-specific or global. Decision trees are gener-
ated following a standard top-down procedure that iteratively
splits the data by applying binary questions using a ML cri-
terion. Questions are asked about the correspondence to pho-
netic groups (defined by hand-made phonetic rules) and the
within-word position (initial, internal and final). The splitting
process is governed by two parameters: a minimum occupa-
tion count for each leaf and a minimum likelihood increase
for each split. Finally, a bottom-up merging process is ap-
plied to merge those leaves which, when merged, produce a
likelihood decrease below the minimum value used to allow a
split.

3.5. Mixture splitting and merging

Acoustic model refinement through mixture splitting and
merging can be performed after each reestimation iteration
using thegmmeditor tool, the original set of HMMs and
the accumulated statistics. Gaussian splitting is performed
iteratively until the desired number of components in the
Gaussian mixture model (GMM) is reached. At each iter-
ation the Gaussian to split is selected based on either the
largest average covariance (default behavior) or the largest
occupation.

After the reestimation iteration(s) that typically follow
mixture splitting, the occupation of some Gaussian compo-
nents may fall below the minimum occupation needed to reli-
ably estimate their parameters (typically 100 feature vectors).
Thus, aiming for a robust parameter estimation, components
with an occupation falling below a given threshold are merged
to the nearest Gaussian in the mixture, which is found using a
covariance metric. Each GMM after applying these tools will
typically have a variable number of components depending



on the data aligned to the HMM-state, which varies across
reestimation iterations.

3.6. Speaker adaptation

Vocal Tract Length Normalization (VTLN) [6] is imple-
mented using a piece-wise linear function with one break-
point to scale the filterbank frequencies. Warp factors are
estimated under the ML criterion using conventional acoustic
models, while unvoiced phones and symbols are excluded
from the estimation.

Maximum Likelihood Linear Regression (MLLR) is im-
plemented for both feature-space (fMLLR) [7] and model-
space adaptation [8]. For fMLLR a single transform is used.
In model-space, mean and diagonal variance adaptation is
performed using a regression tree. The regression tree is gen-
erated by clustering Gaussian means using either K-means
or expectation–maximization (EM) clustering. The cluster-
ing process is governed by two parameters: the maximum
number of base-classes and the minimum number of Gaus-
sian components per base-class. Adaptation statistics areac-
cumulated in the regression tree and transforms are estimated
conditioned on a minimum number of frames and observed
Gaussian distributions per transform.

3.7. Language Modeling

The toolkit supports language models (LMs) in the ARPA n-
gram format. Internally a n-gram LM is represented as a Fi-
nite State Machine (FSM) in which each state represents a
word-history and each transition has a word label (or back-
off symbol) and a log-likelihood attached. Given a new word,
the current LM-state is updated by performing a binary search
on the sorted array of transitions, which includes a transition
to the back-off state. This representation makes the use of
different n-gram sizes transparent to the decoder.

3.8. Lattice Processing

Lattice operations are performed using thelatticeeditor
tool. Operations include: word error rate (WER) computation
(oracle), HMM-state and LM marking, HMM-state align-
ment, path-insertion, determinization (merging of equivalent
states and arcs), posterior probability and confidence measure
computation, etc. This tool only operates on lattices in binary
format, although lattices can be converted to text format for
visualization purposes.

3.9. Discriminative training

The toolkit supports model-based discriminative trainingun-
der the MMI and boosted MMI estimation criteria with can-
cellation of statistics and I-smoothing to the previous itera-
tion [9]. Discriminative training is carried out using the tools

dtaccumulator anddtestimator to accumulate nu-
merator and denominator statistics and to estimate model pa-
rameters from the accumulators respectively. In addition,the
lattice edition tool is used to convert the lattices to a format
suitable for the accumulation of statistics, which includes: lat-
tice determinization, HMM-state marking, path insertion,etc.

Both numerator and denominator statistics are accumu-
lated from a single set of lattices resulting from decoding the
training data. To enable the accumulation of numerator statis-
tics the orthographic transcription of each utterance (with the
corresponding time alignment information) is added to each
lattice if not present, and the path marked.

The accumulation of denominator statistics may imply
a significant number of redundant likelihood computations
across overlapping phones in the lattice. For this reason this
process is carried out by an optimized Forward-Backward
aligner object that utilizes a hash table to cache and reuse
likelihood evaluations. This simple strategy can speed-upthe
accumulation of statistics by over a factor of 2 depending on
the lattice depth.

4. DECODERS

The toolkit comprises two large vocabulary decoders, a dy-
namic decoder and a WFSA (Weighted Finite State Acceptor)
based decoder. The main difference between these systems is
how the LM is applied during the search. The dynamic de-
coder uses a decoding network compiled and optimized from
the set of physical HMM-states and the pronunciation lexi-
con, while the LM is applied dynamically at the token level.
On the other hand, the WFSA decoder performs recognition
on a decoding network in which all sources of information
including the LM are statically compiled and optimized.

These two decoders serve complementary purposes. In
the context of large vocabulary dialog systems we need a large
vocabulary decoder that can handle large and potentially dy-
namic LMs with a small memory footprint for live applica-
tions in resource-constrained scenarios. In turn, the WFSA
decoder exhibits excellent performance for experimentation
at the expense of a large memory footprint on some tasks.

The design of both decoders presents a number of simi-
larities: a) Decoding networks are FSMs in which arcs and
nodes are stored in two contiguous arrays of memory, arcs
keep the offset of the destination node, and nodes keep the off-
set of the first outgoing arc (a node’s outgoing arcs are stored
contiguously). This compact layout saves memory and fa-
vors locality, which reduces cache misses. FSMs representing
LMs are stored in the same fashion. b) HMM self-transitions
are not explicit in the decoding network but simulated dur-
ing the search. c) Data structures frequently accessed during
decoding (such as Viterbi tokens on the dynamic decoder, ac-
tive nodes, word-history items, lattice tokens, etc.) are preal-
located during initialization as contiguous arrays of memory
to preserve locality and speed up the search. This enables



the utilization of offsets instead of pointers, which consider-
ably reduces memory requirements in architectures with 64-
bit memory addresses. d) Word-history items are organized as
a tree; every time a word-arc is visited a new item is appended
to the tree. During decoding a garbage collection mechanism
is periodically invoked to reuse word-history items and lattice
tokens that become inactive. e) During decoding, network
nodes (or tokens) are activated only when their updated path
score is within the pruning beam with respect to the score of
the best partial path.

The implementation of the lattice generation in both de-
coders is identical and very similar to that of the Attila toolkit
[5]. In addition to pruning thresholds, lattice depth is gov-
erned by the maximum number of distinct word sequences
kept at each active node (token in the dynamic decoder),
which are managed by a specialized hash-table.

4.1. Dynamic decoder

This decoder is based on the token-passing paradigm, it sup-
ports triphone and pentaphone phonetic contexts and n-gram
LMs of any size. The decoding network consists of a word
loop built from the set of physical HMM-states and the pro-
nunciation lexicon, while the LM is applied dynamically at
the token level.

The decoding network comprises initial, internal and final
parts, which contain HMM-states for the first phone, internal
phones and final phone of each word respectively. In order to
simplify the network building process for wide phonetic con-
texts, cross-word context spans only adjacent words and only
the initial and final parts are sensitive to it while the inter-
nal part remains sensitive to intra-word phonetic context only.
Initial and final parts are built by enumerating state sequences
corresponding to all possible contexts, and are minimized in-
crementally for efficient support of wide phonetic contexts.
Hash-tables are used to keep auxiliary nodes that facilitate
the connections to the internal part, which is built one word
at a time. Once the network is built, word arcs are pushed to
the initial part of the network in order to allow for early token
recombination. Finally the network is globally minimized us-
ing a forward-backward merging process in order to combine
equivalent arcs and nodes.

LM look-ahead is implemented generating a tree from the
internal part of the network up to the word arcs. This tree is
minimized by merging linear sequences of arcs and pruned in
order to speed-up the computation of the look-ahead scores.
Histogram and beam pruning are carried out globally, at word
ends, and within each active node.

4.2. WFSA decoder

This decoder performs over a statically optimized WFSA that
is composed incrementally following a procedure similar to
the one described by Novak et al. [10]. The network compo-

sition is carried out by thewfsabuilder tool and is lim-
ited to cross-word triphones and small to medium size LMs,
given that the memory requirements would otherwise exceed
the available physical memory. Each transition in the accep-
tor keeps an integer encoding the symbol type (HMM-state
index, word-id or epsilon) and the actual symbol, a floating
point value with the weight, and an integer with the offset of
the destination state within the array of states (12 bytes total).
States in the WFSA can only be reached by transitions with
the same input symbol, which facilitates the recombination.

The decoder utilizes a specialized hash table to facilitate
the activation of states from emitting and epsilon transitions.
At each time frame the active states are processed, path scores
are updated with transition weights and acoustic scores, and
destination states of emitting transitions are activated.Epsilon
transitions are processed in topological order until an emitting
transition is found and its destination state activated.

Figure 1 shows the real time factor (RTF) of both decoders
on the Wall Street Journal (WSJ) Nov’92 task using a bigram
LM. Decoders were run on a laptop computer equipped with
a Core 2 Duo P8600 processor (2.4 GHz and 3MB cache)
and 3GB of main memory (only one core was used). Acous-
tic models consisted of 112k Gaussian components and were
trained under the MLE criterion. The WFSA decoding net-
work had 7M transitions and 3.1M states for a total of 92 MB.
When the SSE instruction set was used for acoustic scoring
the RTF of the WFSA decoder improved by 20 to 30%. Re-
sults in figure 1 improve those reported by Novak [11] for two
WFST-based decoders, Sphinx and HTK on the same task us-
ing a faster machine (comparing comparable systems).

Fig. 1. RTF vs Accuracy on the WSJ Nov’92 task (bigram)



4.3. Acoustic scoring

The computation of Gaussian log-likelihoods is usually the
most CPU-intensive task within an ASR system. Different
techniques have been implemented to speed up this task.

The first optimization consists of using the nearest neigh-
bor approximation [12] in conjunction with partial distance
elimination [13] in order to get rid of the exponential and ter-
minating the computation as early as possible. Additionally,
the support for Single Instruction Multiple Data (SIMD) par-
allel computation present in the x86 architecture is utilized
to perform floating-point arithmetic operations in up to four
vector dimensions simultaneously. In particular, the SSE2
(Streaming SIMD Extensions) Intrinsics were used. In order
to take full advantage of this instruction set the data (features
and model parameters) were 16-byte aligned, because other-
wise a significant portion of the gains resulting from the par-
allel computation were lost when loading and storing the data
into the 128-bit registers. SIMD support can be disabled using
a compilation flag if the SSE instruction set is not supported
by the architecture. Cholesky decomposition is used to speed
up the evaluation of full-covariance Gaussian distributions.

Finally, during decoding multiple network nodes attached
to the same physical HMM-state can be active simultane-
ously, thus acoustic likelihoods for each HMM-state are
cached and reused within each time-frame.

5. EVALUATION

The system was evaluated on two tasks: the WSJ Nov’92 task
(5k and 20k vocabulary sizes) and the MyST task.

5.1. WSJ

Recognition results are reported on the WSJ Nov’92 test sets.
Two evaluation conditions were examined, the 5k closed vo-
cabulary and the 20k open vocabulary conditions. In both
cases non-verbalized pronunciations and standard bigram and
trigram LMs were used. Acoustic models were trained on
80 hours of data from the SI-284 dataset. For every speech
utterance, 39-dimensional feature vectors, consisting of12
MFCCs and energy plus first and second order derivatives,
were extracted and CMN was applied. Word pronunciations
were extracted from the CMU dictionary (cmudict.0.7a) using
the standard CMU phonetic symbol set without stress markers
(39 phonetic classes plus silence). Acoustic models consisted
of 4100 clustered HMM-states and about 112k Gaussian dis-
tributions with diagonal covariance. No feature transforma-
tion or speaker/gender adaptation was carried out.

Table 1 shows the performance of the system in compar-
ison with published results on the WSJ Nov’92 evaluation.
WER is given for 5k and 20k vocabulary sizes using bigram
(bg) and trigram (tg) LMs, first pass decoding only. The table
summarizes WERs from the HTK system described in [14],
the LIMSI dictation system [15], and the more recent Kaldi

toolkit [4]. WERs from Bavieca are given for ML estimation
(which are directly comparable to results from the other sys-
tems) and after four iterations of bMMI training in rows six
and seven respectively. The last column of the table shows
whether gender dependent modeling (GD) was applied. It
can be seen that Bavieca produces comparable results to other
ASR systems.

5k 20k
system bg tg bg tg GD

HTK 5.1 3.2 11.1 9.5 yes
LIMSI 4.8 3.1 11.0 9.1 yes
Kaldi 11.8 no
Bavieca 4.7 3.1 10.6 8.7 no
Bavieca+bMMI1 2.8 8.2 no

Table 1. WER on the WSJ Nov’92 evaluation (%).

5.2. My Science Tutor

My Science Tutor (MyST) [16] is an intelligent tutoring
system designed to improve science learning in elementary
school students through conversational dialogs with a virtual
science tutor. The MyST corpus comprises about 160 hours
of conversational speech from 3rd, 4th, and 5th graders. The
corpus was collected using close-talk microphones and is
divided into 140 hours for training, 10 hours for development
and 10 hours for testing.

5.2.1. Recognition setup

The 140 hours of training data were parameterized using
12 MFCC coefficients plus energy and the first and second
derivatives. CMVN was applied for each session. The pho-
netic symbol set comprised 39 phone classes plus 12 symbols
to model non-speech events including filled pauses and other
events such as silence and breath noise. The vocabulary size
was about 7k words including a small number of alternative
pronunciations. A LM for each of the four modules (mea-
surement, magnetism and electricity, variables and water)was
trained by interpolation from a general LM built on the train-
ing transcriptions only. The CMU LM Toolkit [17] was used
for training and interpolation purposes. The training process
started with a set of single-Gaussian context-independent
(CI) HMMs initialized to the global distribution of the data,
which were reestimated for five iterations. Then a set of 4600
single-Gaussian context-dependent (CD) clustered triphones
was generated using context decision trees. Pentaphone mod-
eling did not reduce the WER and resulted in slower decoding
due to the larger decoding network. After three reestimation
iterations the CD HMMs were refined through 22 iterations

1Results after four iterations of discriminative training,not comparable to
results from the other systems, which are based on MLE solely.



of Gaussian splitting and merging, resulting in about 140k
Gaussian distributions (diagonal covariance).

VTLN was applied according to the standard iterative pro-
cedure until the warp-factors converged (5 iterations). HLDA
was applied by performing single-pass retraining on a set of
extended features (third derivatives were added) and estimat-
ing a full covariance Gaussian distribution for each clustered
HMM-state. Once the transform was estimated, features were
decorrelated and projected down to the original dimensional-
ity and the HMMs were settled into the new feature space.

Model-based discriminative training was conducted using
the bMMI objective function. The training data were decoded
using a bigram LM and lattices were generated. The lat-
tice WER (oracle) was 3.06%, and the lattice depth (average
number of lattice arcs containing words that cross every time
frame) was 383 after making the lattices deterministic. The
size of the uncompressed lattices in disk once processed to be
used for discriminative training was 323GB. Acoustic scores
were scaled down with the inverse of the language-model
scaling factor used for decoding and lattices were marked
with an unigram LM. The Gaussian specific learning rate was
computed setting the constantE to 3. I-smoothing to the pre-
vious iteration was carried out usingτ = 100. The boosting
factorb was set to 0.5. A comprehensive parameter optimiza-
tion was not carried out.

Table 2 shows the WER on the development set after the
different training stages for both speaker independent (SI) and
speaker dependent (SD) systems.

SI SD

initial CD models 23.92 23.92
+VTLN 23.33
+HLDA 23.43 22.98
+bMMI 20.57 20.32
+fMLLR 19.28
+MLLR 18.25

Table 2. WER on the MyST task (%).

6. CONCLUSIONS

Bavieca is an open-source ASR toolkit intended for speech re-
search and system development. The toolkit is based on CD-
HMMs and offers a simple and modular design with an em-
phasis on efficiency, scalability and reusability. Baviecaex-
hibits competitive results on standard benchmarks and is be-
ing successfully used at BLT on a number of research projects
addressing both read and conversational children’s speechas
well as conversational adult’s speech. Nonetheless, the devel-
opment of Bavieca is still a work in progress. Future plans
include exploring generic recipes for building ASR systems,
further code refactoring and testing, and implementation of
new features, such as feature-space discriminative training.

7. REFERENCES

[1] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X.
Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,
and P. Woodland, The HTK Book (for version 3.4). Cam-
bridge University Engineering Department, 2009.

[2] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea,
P. Wolf, and J. Woelfel, “Sphinx-4: A flexible Open Source
Framework for Speech Recognition,” Sun Microsystems Inc.,
Technical Report SML1 TR2004-0811, 2004.

[3] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lö¨of, R.
Schlüter, and H. Ney, “The RWTH Aachen University Open
Source Speech Recognition System,” inProc. of Interspeech,
2009, pp. 2111–2114.

[4] D. Povey, A. Ghoshal et al., “The Kaldi Speech Recognition
Toolkit,” in Proc. of ASRU, 2011.

[5] H. Soltau, G. Saon, and B. Kingsbury, The IBM Attila Speech
Recognition Toolkit, in Proc.IEEE SLT, 2010.

[6] L. Lee & R. C. Rose. A frequency warping approach to
speaker normalization, 1998.IEEE TSAP. 6, 1, 49–60.

[7] M. J. F. Gales, “Maximum-likelihood linear transforms for
HMM-based speech recognition,”Computer Speech and Lan-
guage, vol. 12, no. 2, pp. 75–98, 1998.

[8] C. J. Leggetter, & P. C. Woodland, 1995. Maximum likeli-
hood linear regression for speaker adaptation of continuous
density Hidden Markov Models.Comput. Speech Langu.9,
171–185.

[9] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G.
Saon, and K. Visweswariah, “Boosted MMI for model and
feature space discriminative training,” inProc. ICASSP, 2008,
pp. 4057–4060.

[10] M. Novak, “Incremental composition of static decoding
graphs,” inProc. of Interspeech, 2009, pp. 1175–1178.

[11] J. Novak et al., An Empirical Comparison of the T 3 , Juicer,
HDecode and Sphinx3 Decoders, InProc Interspeech 2010.

[12] F. Seide, “Fast likelihood computation for continuous-
mixture densities using a tree-based nearest neighbor search,”
in Proc. Eurospeech, 1995, pp. 1079–1082.

[13] C. D. Bei and R. M. Gray, “An improvement of the minimum
distortion encoding algorithm for vector quantization,”IEEE
Trans. Commun., vol. COM-33, pp. 1132–1133, Oct. 1985.

[14] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young,
“Large vocabulary continuous speech recognition using
HTK,” in Proc. ICASSP, vol. 2, 1994, pp. II/125–II/128.

[15] J. L. Gauvain et al., “The LIMSI speech dictation system:
evaluation on the ARPA Wall Street Journal task,” inProc.
ICASSP 1994, Vol. I, pp. 557–560.

[16] W. Ward, R. Cole, D. Bolaños et al., My Science Tutor: A
conversational multimedia virtual tutor for elementary school
science.ACM Trans. Speech Lang. Process., 7(4), 2011.

[17] R. Rosenfeld, 1994. The CMU Statistical Language Model-
ing Toolkit.


